INFLUENCE DE LA TENSION DE VAPEUR SUR UNE TRANSITION DE PHASES ET UN EQUILIBRE PERITECTOIDE

Représentation T - V - x applicable au système As₂Se₃-As

J. C. Rouland, C. Souleau et R. Céolin

LABORATOIRE DE CHIMIE MINÉRALE II, UER DES SCIENCES PHARMACEUTIQUES ET BIOLOGIQUES, UNIVERSITÉ DE PARIS-SUD, 5, RUE J. B. CLÉMENT 92296 CHÂTENAY-MALABRY CEDEX, FRANCE

(Reçu le 17 Avril, 1986)

The compound As₄Se₃ exhibits two polymorphs, α and β . The latter undergoes a peritectoid decomposition. The two phenomena require a vapour pressure action. They are both explained on the basis of a T - V - x diagram. Two cases are described. In the first hypothesis, no solid solution exists. The second hypothesis implies two solid solutions for the two forms α and β . A comparative study of these two cases has been made. The existence of two invariant planes has been shown in the second case, which makes it rather different from the first one.

Dans la récente série d'articles que nous avons publiés sur la représentation T - V - x des systèmes binaires à tension de vapeur non négligeable, nous avons envisagé, d'un point de vue théorique et à l'aide de données expérimentales, les cas d'invariances eutectiques, péritectiques et monotectiques [1 à 7]. Dans le système As₂Se₃-As, qui a fait l'objet du plus récent de ces articles, nous avons signalé la présence de la transition de phases

$As_4Se_3-\alpha \rightleftharpoons As_4Se_3-\beta$

mise en évidence par Bastow [8]. D'après Blachnik [9] la forme β donnerait lieu à une décomposition péritectoïde à une température proche de 500 K. Partant uniquement des données de la littérature, nous formulons dans le présent article une hypothèse sur la représentation qui peut être donnée de cette transition de phases et de cette décomposition péritectoïde dans l'espace T - V - x.

Aucune donnée d'analyse thermique ne peut actuellement ni confirmer ni infirmer cette hypothèse qui s'inscrit cependant dans la logique des travaux que nous avons effectués sur les systèmes binaires à tension de vapeur non négligeable.

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

Donnés bibliographiques

a) Transition de phases

D'après Bastow, $As_4Se_3-\alpha$ cristallise dans le système orthorhombique, groupe d'espace Pnma, et $As_4Se_3-\beta$ dans le système monoclinique, groupe d'espace C2/c ou Cc.

Bastow montre que ces deux formes cristallines peuvent être obtenues simultanément par sublimation sous un gradient de température compris entre 60 et 140° . Blachnik situe la transition de phases vers 450 K.

b) Décomposition péritectoïde

La décomposition envisagée par Blachnik pour As_4Se_3 ne mettant pas en jeu de phase liquide, la réaction doit être du type :

$$As_4Se_3$$
 (sol.) $\Rightarrow 0.75 As_4Se_4$ (sol.) + As (sol.)

D'autre part nous avons vu que les données cristallographiques permettaient de connaître les volumes massiques des différents composés solides [7] et que As₄Se₃- β possédait, à la température ambiante, un volume massique supérieur à celui des autres constituants (0,225 mm³ · mg⁻¹, contre 0,222 pour As₄Se₃- α , 0,208 pour As₄Se₄ et 0,173 pour As).

Hypothèse sur l'organisation dans l'espace T - V - x, de la transition de phases $\alpha \rightleftharpoons \beta$ et de l'invariant péritectoïde

1. En l'absence de solution solide.

Nous envisagerons tout d'abord le cas le plus schématique où les phases α et β sont supposées avoir la stricte composition As₄Se₃. Compte-tenu de leurs volumes massiques respectifs et du domaine de température dans lequel elles sont stables, on est amené à considérer une transformation du type

$$As_4Se_3-\alpha$$
 (sol.) + As_4Se_3 (vap.) \rightleftharpoons $As_4Se_3-\beta$ (sol.)

à la température T_1 . Cette réaction définit une ligne triple $S_1S'_1V_1$ (Fig. 1). Comme les volumes massiques habituellement utilisés sont nettement supérieurs à celui de $As_4Se_3-\beta$ solide, c'est à la température de cette ligne triple que devraient se situer, sur les courbes d'ATD, les accidents concernant cette transition de phases. Nous avons vu que, au-dessus de l'invariant péritectoïde existait un domaine triphasé As_4Se_4 (sol) + As (sol.) + vapeur. Si, comme c'est probable, le volume massique de la forme β reste peu différent, à la température de l'invariant péritectoïde, de celui

J. Thermal Anal. 32, 1987

Fig. 1 Représentation T-V-x de la transition As₄Se₃- $\alpha \rightleftharpoons As_4Se_3-\beta$ et de la décomposition de As₄Se₃- β , en l'absence de solution solide et de domaines biphasés α -vapeur et β -vapeur

qui lui est attribué à l'état métastable, à la température ambiante, la décomposition de β doit avoir lieu à la température T_3 suivant la réaction

 $As_4Se_3-\beta$ (sol.) \Rightarrow As (sol.) + As_4Se_4 (sol.) + As_4Se_3 (vap.),

quand la température augmente. Le plan d'invariance est donc triangulaire et la phase β en est la phase centrale. Le domaine de stabilité de β se prolonge jusqu'à la température T_1 à laquelle a lieu la transformation $\beta \rightleftharpoons \alpha$ déjà décrite.

La coupe isopléthique établie pour la composition As_4Se_3 peut être considérée comme un diagramme d'état T-V de As_4Se_3 . Or, dans tout diagramme d'état T-V, les domaines d'existence des phases latérales d'un invariant se prolongent aux températures supérieures à celles de la ligne triple. Il en est de même ici pour le domaine $As_4Se_3-\alpha$. Comme la phase α ne peut apparaître au niveau de l'invariant péritectoïde à la température T_3 , il est nécessaire d'envisager sa décomposition à la température T_2 suivant la réaction

$$As_4Se_3 - \alpha \rightleftharpoons As (sol.) + As_4Se_4 (sol.) + As_4Se_3 - \beta$$

qui se traduit par l'existence d'un plan d'invariance triangulaire.

Il existe donc un domaine de température, compris entre T_1 et T_2 , pour lequel les deux phases α et β sont en équilibre.

Par ailleurs, cette représentation de la transition $\alpha \rightleftharpoons \beta$ est en accord avec l'expérience de Bastow qui obtient les deux formes par sublimation de As₄Se₃ dans une ampoule où existe un gradient de température compris entre 60 et 140°. Bastow prépare As₄Se₃ de la manière suivante :

562 ROULAND et al.: INFLUENCE DE LA TENSION DE VAPEUR

La fusion de poudres d'arsenic et de sélénium mélangées dans une ampoule de silice scellée sous vide donne un verre As_4Se_3 . Ce verre est pulvérisé et recuit à 220° pendant plusieurs jours dans une ampoule de 150 mm de long et de 10 mm de diamètre intérieur. L'ampoule est ensuite placée sous un gradient de température allant de 60 à 140°. Au bout de quatre semaines, Bastow observe deux types de cristaux, déposés après sublimation.

2. En présence de domaines d'homogénéité autour des phases α et β

Nous n'avons, jusqu'à présent envisagé que le cas où les composés $As_4Se_3-\alpha$ et $As_4Se_3-\beta$ possédaient des domaines d'existence uniquement délimités en température et en volume massique, mais ces composés peuvent également être délimités en composition : il y a alors existence de deux solutions solides. C'est ce qui apparaît sur la Fig. 2.

Fig. 2 Représentation T - V - x de la transition de phases As₄Se₃- $\alpha \rightleftharpoons$ As₄Se₃- β , lorsque les deux phases forment des solutions solides

a) Domaine des phases solides

Si l'on considère le plan constitué par les points $S_1P_2S_2P_3V_3V_1$ (Fig. 1) comme formant le diagramme d'état du composé binaire As_4Se_3 , par analogie avec les systèmes binaires que nous avons étudiés dans l'espace T - V - x, on doit considérer l'existence d'une extension binaire de la phase β telle que celle qui est schématisée sur cette figure. La phase β about it en S'_0 et en S''_0 sur deux plans d'invariance $As_{-}S_0 - V_0$ et $As_4Se_4 - V'_0 - S'_0$ situés à des températures (T_0 et T'_0) inférieures à la

J. Thermal Anal. 32, 1987

température de la ligne triple $S_1S'_1V_1$. Le point S_0 et son homologue S''_0 constituent les points figuratifs de la phase α à deux equilibres invariants qui s'écrivent (quand la température augmente) :

As (sol.) + phase
$$\alpha + V \rightleftharpoons$$
 phase β

et

As₄Se₄ (sol.) + phase
$$\alpha + V \rightleftharpoons$$
 phase β .

La phase α se décompose alors à la température T_2 en donnant:

phase
$$\alpha \rightleftharpoons As$$
 (sol.) + As₄Se₄ (sol.) + phase β

et la phase β subit une sublimation incongruente:

$$\beta \rightleftharpoons As (sol.) + As_4Se_4 + vapeur V_3$$

à la température T_3 sans qu'il n'apparaisse de changement par rapport au schéma de la Fig. 1.

b) Domaine de la vapeur

Les courbes de vaporus, lieux géométriques des phases vapeur des domaines triphasés (As(Sol.)-liquide-vapeur) et (As₄Se₄(sol.-liquide-vapeur) au-dessus de l'invariant eutectique (qui ne figure pas sur le schéma de la Fig. 2) convergent vers le point V_4 à la température de l'eutexie. A partir de V_4 , une courbe de vaporus figurant la phase vapeur du domaine As-As₄Se₄-vapeur, au-dessous de l'eutexie, se prolonge jusqu'en V_3 , point figuratif de la phase vapeur à l'équilibre péritectoïde :

phase
$$\beta \rightleftharpoons As + As_4Se_4$$
 (sol.) + V

En V_3 deux courbes de vaporus prennent naissance. Elles constituent les lieux géometriques des vapeurs des domaines (As (sol.)-phase β -vapeur) et (As₄Se₄-phase β -vapeur). Ces deux vaporus se dirigent respectivement vers V_0 et V'_0 , points figuratifs des phases vapeurs aux températures T_0 et T'_0 où la phase β se forme suivant les réactions :

As + phase
$$\alpha$$
 + vapeur \rightleftharpoons phase β

et

As₄Se₄ + phase
$$\alpha$$
 + vapeur \rightleftharpoons phase β

quand la température augmente.

En V_0 et V'_0 aboutissent également deux courbes de vaporus qui prennent naissance au point V_1 de la ligne triple de As₄Se₃: elles figurent les lieux géométriques des vapeurs des deux domaines triphasés ($\alpha + \beta + vapeur$) qui se trouvent de part et d'autre du plan isopléthique constituant le diagramme d'état As₄Se₃ et qui sont respectivement situés entre les températures T_1 et T_0 et entre T'_1 et T'_0 . La courbe V_3V_1 tracée en pointillés ne figure que la trace du plan isopléthique As₄Se₃ sur les nappes de vaporus.

c) Températures des plans d'invariance

La détermination des températures T_1 et T_3 ne semble pas précise. Blachnik situe la décomposition péritectoïde de As₄Se₃ vers 480 K et la transition de phases vers 450 K, soit 177°. L'expérience de Bastow permet, elle, de penser que cette transition se situe entre 60 et 140°. Quant aux températures T_0 et T'_0 , elles sont probablement d'autant plus proches de T_1 que la solution solide β est plus étroite.

d) Etude des coupes isothermes

Deux coupes isothermes ont été construites. L'une (Fig. 3) correspond à une température comprise entre T_1 et T_2 . Les deux phases solides α et β y sont donc présentes mais seule la phase β est en équilibre avec sa vapeur. Dans aucun domaine la phase α n'apparaît en présence de vapeur.

Sur la seconde coupe (Fig. 4), construite pour une température comprise entre T_0 (ou T'_0) et T_1 , la phase β apparaît sous forme de deux domaines distincts. Les deux phases sont, pour les valeurs élevées du volume massique, en équilibre avec leur

Fig. 3 Coupe isotherme se rapportant au cas représenté sur la figure 2, pour $T_1 < T < T_2$

J. Thermal Anal. 32, 1987

Fig. 4 Coupe isotherme se rapportant au cas représenté sur la figure 2, pour T_0 (ou T'_0) < T < T_1

vapeur. A mesure que la température s'élève (de T_0 à T_1), les deux domaines s'agrandissent et se rapprochent l'un de l'autre. A partir de T_1 , ils fusionnent et n'en forment plus qu'un seul. On est alors ramené au cas de la Fig. 3.

Conclusion

La description T - V de la transition $As_4Se_3 - \alpha \rightleftharpoons As_4Se_3 - \beta$ décrite sur la Fig. 1, est tout à fait comparable à l'invariance eutectoïde telle qu'elle est décrite dans un binaire classique T - x, à ceci près qu'une des deux phases latérales n'est pas un solide mais une vapeur.

Si, de plus, on prend en compte le fait que As_4Se_3 est un composé binaire, on peut rapprocher le plan T-V dans lequel s'inscrit la transition $\alpha \rightleftharpoons \beta$ d'une section quasi-binaire d'un ternaire classique $T-x_1-x_2$. Dans un cas comme dans l'autre, on observe une horizontale à trois phases et la disposition classique en selle (« saddle point »).

Cette analogie peut être encore évoquée dans l'hypothèse de l'existence de

solutions solides α et β dont la conséquence est la formation de deux plans d'invariance eutectoïde de part et d'autre de la composition As₄Se₃ à des températures (T_0 et T'_0) inférieures à celle de la ligne triple (T_1).

Sur un diagramme isochore tracé pour un volume massique supérieur à celui de la phase β (Fig. 5), ce qui sera le cas habituel compte-tenu des contraintes expérimentales, c'est donc aux températures T_0 et T'_0 , qui ne seront pas nécessairement identiques, que paraîtra se situer cette transition de phases.

L'absence de domaine d'homogénéité entraîne la dégénérescence des invariants situés à T_0 et T'_0 et le fait que ces deux températures se confondent pratiquement avec T_1 . Elle entraîne encore que le domaine $(\beta + V)$ soit réduit à une simple verticale, comme le montre l'encadré de la Fig. 5. L'horizontale située de part et d'autre du point A (trace de la ligne triple à T_1) doit être considérée comme la juxtaposition de deux invariants.

Encadré : cas où il n'y a pas de solution solide.

 $1 = \alpha + V, 2 = \beta + V, 3 = As + \alpha + \beta + V, 4 = As_4Se_4 + \alpha + \beta + V$

L'absence de domaine d'homogénéité entraîne également que les points V_0 et V'_0 tendent vers V_1 et que les courbes de vaporus V_3V_0 et $V_3V'_0$ tendent vers V_3V_1 . Cependant, les deux courbes de vaporus V_1v_0 et $V_1v'_0$ demeurent (Fig. 2). La section isochore du domaine (α + vapeur) peut donc, même en l'absence de solution solide α , ne pas être dégénérée en une simple verticale. Il existe alors un domaine biphasé

J. Thermal Anal. 32, 1987

qui n'est pas lié à la présence d'un domaine d'homogénéité bien que sa description dans les sections polythermiques isochores apparaisse identique à celle des solutions solides des représentations polythermiques isobares.

Bibliographie

- 1. J. C. Rouland, C. Souleau et R. Ceolin, J. Thermal Anal., 30 (1985) 429.
- 2. J. C. Rouland, C. Souleau et R. Ceolin, J. Thermal Anal., 30 (1985) 1077.
- 3. J. C. Rouland, C. Souleau et R. Ceolin, J. Thermal Anal., 31 (1986) 305.
- 4. J. C. Rouland, C. Souleau et R. Céolin, J. Thermal Anal., 31 (1986) 1357.
- 5. J. C. Rouland, C. Souleau et R. Céolin, J. Thermal Anal., 32 (1987) 185.
- J. C. Rouland, C. Souleau et R. Céolin, J. Thermal Anal., 32 (1987) 197.
- 7. J. C. Rouland, C. Souleau et R. Céolin, J. Thermal Anal., 32 (1987) 547.
- T. J. Bastow et H. J. Whitfield, J. Chem. Soc., Dalton Trans., 10 (1977) 959.
- R. Blachnik, A. Hoppe et U. Wickel, Z. Anorg. Allg. Chem., 463 (1980) 78.

Zusammenfassung — Die Verbindung As₄Se₃ tritt in den polymorphen Formen α und β auf. Die letztere wird peritektoid zersetzt. Die zwei Phänomene erfordern eine Mitwirkung des Dampfdruckes und werden an Hand des T - V - x-Diagramms erklärt. Zwei Fälle werden beschrieben. In der ersten Hypothese kommt keine feste Lösung vor. Die zweite Hypothese schließt zwei Lösungen für die zwei Formen α und β in sich ein. Es wurde eine vergleichende Untersuchung dieser zwei Fälle ausgeführt. Für den zweiten Fall wurde gezeigt, daß zwei invariante Flächen vorliegen, wodurch sich dieser ziemlich stark vom ersten Fall unterscheidet.

Резюме — Соединение As_4Se_3 показывает две полиморфные формы α и β , из которых вторая подвергается перитектоидному разложению. Оба явления объяснены на основе диаграммы T-V-x и требуют наличия давления паров. Приведены два гипотетические объяснения этим явлениям. Согласно первой гипотезе предполагается отсутствие твердого раствора, тогда как вторая гипотеза предполагает наличие двух растворов для обоих α и β форм. Сопоставление обоих гипотетических случаев показало наличие двух инвариантностей во втором случае, что значительно отличает его от первого.